

M.Sc.

Hydrogen Technology

Dean of Studies: Prof. Dr.-Ing. Johannes Völkl

Valid for summer semester 2025

(SPO 20231)

Module catalogue

This version is under constant development by the responsible lecturer. It is applicable to lectures, lab or computer courses. All regulations and provisions are in accordance with the university study regulations.

approved by the Faculty Council on 14th of March, 2025

Version: 22.01.2025 - SPO 20231

Table of Contents

TABLE OF CONTENTS	2
STUDY AND EXAMINATION REGULATIONS	3
PROGRAMME CONTENT AND ORGANIZATION	4
PROGRAMME DESCRIPTIONRECOMMENDED PROGRAMME ORGANIZATION	
ELECTIVE MODULES	6
REGULATIONS AND PROVISIONS	9
PROJECT THESIS WITH PROJECT SEMINAR	9
MODULE CATALOGUE	12
COMPULSORY MODULES	12
HTF 01: Fundamentals of Hydrogen and Safety	12
HTF 02: Scientific Methods and Writing	
HTM 01: Project Thesis with Project Seminar	16
HTM 02: Master's Thesis	19
Module Group: Specialization and Application & Competence-Oriented	21
HTS 01: Chemical H₂ Conversion: Applications and Industrial Processes	
HTS 02: Homogeneous Catalysis	25
HTS 03: Energy Politics and Laws	
HTS 04: Advanced Thermodynamics for Hydrogen Applications	28
HTS 05: Sources and Generation of Hydrogen	
HTS 06: Hydrogen Storage, Transportation and Distribution Systems	
HTS 07: Electrochemical Process Engineering	
HTS 08: Techno-Economic Analysis and Simulation	
HTS 09: Energy Technologies	
HTS 10: Introduction to the Economics of Hydrogen Markets	40
HTS 11: Computational Fluid Dynamics for Process Industry	
HTS 12: Membrane Technologies	
HTS 13: Heterogenous Catalysis	46
HTS 14: Carbon Management	48
HTS 15: Project Management	50
HTS 16: Chemistry of renewable resources	51

Study and examination regulations

The current valid study and examination regulations of the University of Applied Science Rosenheim can be found on the homepage:

https://www.th-rosenheim.de/home/infos-fuer/studierende/studienorganisation/formalia/studienregelungen/studien-und-pruefungsordnungen/

22.01.2025 – SPO 20231 Page 3 of 52

Programme content and organization

Programme description

The reduction of climate gases and the establishment of a sustainable economy is a common goal of both politics and society. Especially, the chemical industry will encounter a huge transformation when process routes switch to sustainable energy and raw materials. Certainly, this development is not limited to this industry but will effect all sectors.

The master's programme Hydrogen Technology is developed to give students an application-oriented education focused on Hydrogen. The goal is to deepen and specialize one's knowledge in production, storage, transport and application of Hydrogen, and related fields. The programme offers modules to gain in-depth technological as well as applied and competence-oriented knowledge. The theoretical base is supplemented with a project within the area of Hydrogen Technology and current challenges of applied research and development projects.

To achieve this goal the programme is organized as a combination of compulsory fundamental modules; specialization modules with a stronger theoretical background; application and competence-oriented modules; as well as a project thesis including a project seminar. The programme is completed with a master's thesis.

All students must take the compulsory modules HTF 01 "Fundamentals of Hydrogen and Safety" and HTF 02 "Scientific methods and writing." This corresponds to 10 CP.

From the Specialization and Application & Competence-oriented Elective Modules a total of 40 CP must be earned to complete the programme. One must select at least 10 CP from the Specialization group and 10 from the Application & Competence-oriented group. The modules and their assignment to these groups are summarized in this module handbook and may be updated by the faculty board.

The theoretical foundation is supplemented by a project thesis, with an accompanying project seminar, on topics from the area of Hydrogen Technology and current challenges of applied research and development projects. This corresponds to 10 CP.

The independent and creative application of knowledge on a problem from Hydrogen Technology is demonstrated in the master's thesis at the end of the programme. The thesis is worth a total of 30 CP.

Upon request, other modules from the range of courses offered by Rosenheim Technical University of Applied Sciences or other universities can also be selected and credited as required elective modules. The Examination Committee decides on the request and the allocation as a specialist required or application and skill-oriented required elective module.

Recommended programme organization

Table 1: Recommended programme organization

Semester	Module number	Module name	Module group	СР
1	HTF 02	Scientific Methods and Writing	Compulsory	5
	HTS		Specialization	10
	HTS		Application & Competence-oriented	10
	HTF 01	Fundamentals of Hydrogen and Safety	Compulsory	5
2	HTS		Specialization	10
	HTS		Application & Competence-oriented	10
	HTM 01	Project Thesis		10
3	HTM 02	Master's Thesis		30
Total				90

At least 10 CP must be earned from the module group "Specialization."

At least 10 CP must be earned from the module group "Application & Competence-Oriented." In total, 40 CP must be earned from the groups "Specialization" and "Application & Competence-Oriented."

22.01.2025 – SPO 20231 Page 5 of 52

Elective modules

In the following the modules, which can be selected in the "Hydrogen Technology" master's programme are listed. Besides the compulsory courses the courses are classified into the following groups:

- Specialization
- Application & Competence-Oriented

The course listed in Table 2 and 3 show the current classification of courses and whether the course is being held in summer or winter semester.

In accordance with §5 of the study regulations, it is possible to select courses from the catalogue of the University of Applied Science Rosenheim or other Universities, which are not listed in Table 2 and 3. This selection must be approved by the programme's examination board. The approval must be carried out for each student individually. These courses must match the technical and academic profile of the "Hydrogen Technology" master's programme. Students receive information from the examination board in advance, if the selection is approvable. The corresponding application for approval can be found on the homepage of the master's programme.

22.01.2025 – SPO 20231 Page 6 of 52

Table 2: Module list in winter term

Module		Compulsory group	Specialization group	Application & Competence- oriented group
HTF 01	Fundamentals of Hydrogen and Safety	X		
HTS 01	Chemical H ₂ Conversion: Applications and Industrial processes			x
HTS 02	Homogeneous Catalysis			X
HTS 06	Hydrogen Storage, Transport and Distribution Systems		X	
HTS 09	Energy Technologies			X
HTS 11	Computational Fluid Dynamics for Process Industry		x	
HTS 12	Membrane Technologies		X	
HTS 13	Heterogeneous Catalysis			X

Table 3: Module list in summer term

Module		Compulsory group	Specialization group	Application & Competence- oriented group
HTF 02	Scientific Methods and Writing	X		
HTS 04	Advanced Thermodynamics for Hydrogen Applications		X	
HTS 05	Sources and Generation of Hydrogen		x	
HTS 03	Energy Politics and Laws			X
HTS 07	Electrochemical Process Engineering		x	

22.01.2025 – SPO 20231 Page 7 of 52

HTS 08	Techno-economic Analysis and Simulation		X
HTS 10	Introduction to the Economics of Hydrogen Markets		x
HTS 14	Carbon Management	X	
HTS 15	Project Management		X
HTS 16	Chemistry of Renewable Resources	X	

22.01.2025 – SPO 20231 Page 8 of 52

Regulations and Provisions

Project thesis with project seminar

Potential topics for the project thesis can be found in the Learning Campus or can be discussed directly with the supervisor. In addition, carrying out the project thesis at a company is possible. A summary of the regulations and provisions is shown in Table 4.

Table 4: Regulations and provisions for the project thesis

Topic generation	A list of project topics is given in the learning campus. Details and the specific scope are to be discussed with the supervisors. The title does not need to be in the project list.			
Thesis application	The student has to apply for the allocation of the topic to the regulation board after the student and the supervisor agree on a topic and its scope. The application form is in the learning campus. The application procedure is shown in Figure 1.			
Requirement for the topic and content	Within the project thesis the student should work on a topic of ongoing research and development withing the area of Hydrogen Technology. Those topics can have a direct relation to Hydrogen or other challenges originating from the transformational processes in industry.			
	If a topic is selected which is processed outside of the university (e.g. in a company) it is highly recommended to discuss the outline of the thesis with the examiner before the project starts to align on the content and the goal of the thesis. For the evaluation and grading of the thesis the following points are taken into account:			
	Formal structure and layout of report and presentation			
	Self-motivation and engagement			
	Innovative character of topic			
	Relevance for research and industry of the topic within Hydrogen Technology and transformation goals			
Duration	After admission of the topic by the regulation board the maximum duration is 5 month from the date of the admission.			
Examiner	The student nominates an examiner and a second assessor for the project thesis in the application process. The nomination is approved by the examination board. The examiner is responsible for the assessment of the project thesis.			

Examinations

The project thesis with project seminar consists of one Admission Requirement and two successful examinations.

- Admission Requirement: The discussion of the topic with the main supervisor to agree on a topic is completed with the signature of the supervisor of the application form. This discussion is the admission requirement to start the project thesis.
- Oral Examination: after completion of the tasks of the project thesis the results are presented. This examination consists of 20 minutes of presentation and 10 minutes of discussion. The examination is held after completion, the date will be determined together with examiner. It has to be within the maximum duration period of the project thesis. As an alternative, the presentation can also be given as part of an academic or technical conference in the presence of the examiner.
- Written project thesis: the thesis is submitted as a written scientific report. The submission deadline is defined in the application form for the project topic. The deadline is 5 month after the date of the admission of the topic. The report should be submitted in a digital format such as a pdf-file.
- Weight of the grade: 90 % written report / 10 % oral examination.
- In the final grading report only the combined final grade will be included

22.01.2025 – SPO 20231 Page 10 of 52

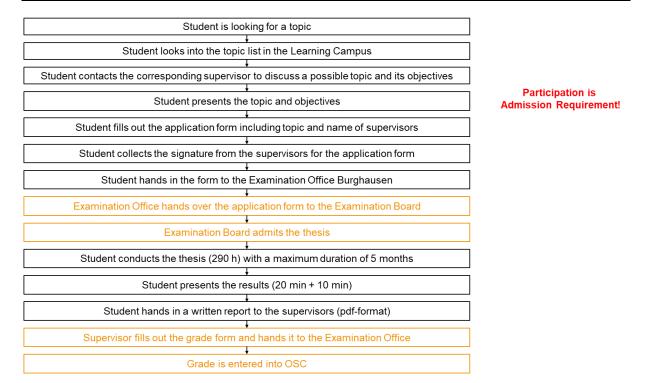


Figure 1: Process for application and subsequent procedures for the Project Thesis

22.01.2025 – SPO 20231 Page 11 of 52

Module catalogue

Compulsory Modules

HTF 01: Fundamentals of Hydrogen and Safety

Module Responsible	Prof. DrIng. Patrick Preuster			
Lecturer	Prof. DrIng. Patrick Preuster, Prof. DrIng. Wolfgang Arlt			
Module Group	Compulsory			
Module Duration	1 semester			
Term	Winter			
Applicability of the module in the degree program	Mandatory subject in HYT-Master			
Course Type	• Lecture: 80%			
	Practical Course: 20%			
Credit Points (ECTS)	5			
Weekly Working Hours	4			
Total Workload	150 hours			
Prerequisites	Fundamental understanding of (chemical) engineering			
Learning Goals	 After the course students understand the thermodynamic characteristics of hydrogen understand are able to describe physical hydrogen storage technologies e.g. liquefaction and compression are able to conduct a risk assessment on hydrogen-based applications and know how to handle typical risks and evaluate hazards know general methods of hydrogen generation know the different technologies of hydrogen storage and transportation 			
Content	Repetition of (chemical) engineering fundamentals			

22.01.2025 – SPO 20231 Page 12 of 52

	 Fundamental properties of Hydrogen 		
	 Thermodynamic characteristics of Hydrogen and its applications 		
	 Safety topics regarding the handling, storage and transport of Hydrogen 		
	Overview of hydrogen generation methods		
Material	Lecture notes as downloadable files (learning campus)		
Examination	Admission requirements, type and duration according to Study Regulations (SPO), updated at the beginning of each term, announcements published by the examination office		
Literature	Specific literature for each chapter, current papers, will be announced during lectures		

22.01.2025 – SPO 20231 Page 13 of 52

HTF 02: Scientific Methods and Writing

Module Responsible	Prof. DrIng. Johannes Völkl			
Lecturer	Oscar Rojas, Sania Baars, Prof. Dr. Dorottya Kriechbaumer, Prof. Dr. Manuela List, Prof. DrIng. Patrick Preuster, Prof. Dr. Dominik Pentlehner, Prof. DrIng. Johannes Völkl			
Module Group	Compulsory			
Module Duration	1 semester			
Term	Summer			
Applicability of the module in the degree program				
Course Type	• Lecture: 10%			
	Practical Course: 90%			
Credit Points (ECTS)	5			
Weekly Working Hours				
Total Workload	150 hours			
Prerequisites				
Number of Participants	Limited (180)			
	Enrollment requires in-person signing of a list. If the number of interested students exceeds the maximum number the seats will be awarded based on the following order of criteria: 1. Study semester 2. Amount of Credit Points			
	3. Current Average Grade			
Learning Goals	After the module students			
	 know how a scientific text has to be structured 			
	know different types of citation			
	 are aware of different approaches in different journals in the field of natural science and engineering 			
	 are able to summarize a scientific text and present these results 			
	 apply the knowledge in scientific texts like the project thesis or master thesis in the future 			

22.01.2025 – SPO 20231 Page 14 of 52

Content	The lecture is structured in the following phases:			
	Signing up for enrollment			
	 Introduction session with theoretical background on scientific writing and presentation 			
	 Splitting in small groups under the supervision of one lecturer 			
	Receiving a scientific text			
	Preparing a presentation, which should consist of			
	 Summary of the content of the text 			
	 Presentation and visualization of the underlaying theoretical background and the proposed results 			
	 Presentation should consist information taken directly from the scientific text as well as from additional sources 			
	 Presentation has to follow all standards of scientific presentations 			
	Presenting in front of the supervisor			
	 Fill out at least 5 feedback questionnaire → attending presentations of other students 			
Material	Lecture notes as downloadable files (learning campus)			
Examination	The examination is the presentation of the theoretical background and results of the handed out scientific text from a chosen topic			
Literature	Specific literature for each chapter, current papers, will be announced during lectures			

22.01.2025 – SPO 20231 Page 15 of 52

HTM 01: Project Thesis with Project Seminar

Module Responsible	Prof. DrIng. Johannes Völkl		
Lecturer	Nominated by the examination board		
Module Group	Compulsory		
Module Duration	1 semester		
Term	Winter		
Applicability of the module in the degree program	Mandatory subject in HYT-Master		
Course Type	Project thesis with presentation in a project seminar		
Credit Points (ECTS)	10		
Weekly Working Hours			
Total Workload	Total 300 hours		
	Project thesis work: 290 hours		
	Seminar with own presentation: 10 hours		
Prerequisites	None		
Learning Goals	The learning goals should include the following competencies as defined by "Qualifikationsrahmen für die Deutschen Hochschulabschlüsse" for master's programs in Germany: • Instrumental Competencies Knowledge and understanding as well as competencies for solving problems in new situations		
	Systemic competencies		
	 Dealing with complex challenges 		
	 Making decisions based on academic and scientific principles, even under uncertainties 		
	Acquiring new knowledge independently		
	 Working independently on an extensive academic and scientific topic 		
	Communication competencies		

0	Present	one's	own	scientific	conclusions	to	an
	audience	e of exp	oerts a	and non-ex	xperts in a cle	ar a	and
	meaning	ful way	/				

 Discuss scientific topics, challenges and ideas with experts and non-experts

The project report and presentation are supporting the general study goal of generating and deepening language, presentation and communications skills.

Collaborative skills are trained by working on a scientific topic with other people and discussing challenges and results within a project team.

Content

- Literature research
- Definition of the problem to be solved
- Planning of experiments and steps to solve the problem
- Experimental work and/or academic research
- Preparation of a project report and a project presentation

Material

Material provided by the supervisor, own research

Examination

The project thesis with project seminar consists of one Admission Requirement and two successful examinations.

- Admission Requirement: The discussion of the topic with the main supervisor to agree on a topic is completed with the signature of the supervisor of the application form. This discussion is the admission requirement to start the project thesis.
- Oral Examination: after completion of the tasks of the project thesis the results are presented. This examination consists of 20 minutes of presentation and 10 minutes of discussion. The examination is held after completion, the date will be determined together with examiner. It has to be within the maximum duration period of the project thesis. As an alternative, the presentation can also be given as part of an academic or technical conference in the presence of the examiner.
- Written project thesis: the thesis is submitted as a written scientific report. The submission deadline is defined in the application form for the project topic. The deadline is 5

22.01.2025 – SPO 20231 Page 17 of 52

month after the date of the admission of the topic. The report should be submitted in a digital format such as a pdf-file.

- Weight of the grade: 90 % written report / 10 % oral examination.
- In the final grading report only the combined final grade will be included

Literature

22.01.2025 – SPO 20231 Page 18 of 52

HTM 02: Master's Thesis

Module Responsible	Prof. DrIng. Johannes Völkl	
Lecturer	Nominated by the examination board	
Module Group	Compulsory	
Module Duration	1 semester	
Term	Winter / Summer	
Applicability of the module in the degree program	Mandatory subject in HYT-Master	
Course Type	Master's thesis	
Credit Points (ECTS)	30	
Weekly Working Hours		
Total Workload	Total 900 hours	
Prerequisites	30 CP required to apply for a thesis topic (according to study regulations of the "Hydrogen Technology" master's program)	
Learning Goals	The learning goals include the following competencies as defined by "Qualifikationsrahmen für die Deutschen Hochschulabschlüsse" for master's programs in Germany: • Instrumental Competencies Knowledge and understanding as well as competencies for solving problems in new situations • Systemic competencies • Dealing with complex challenges • Making decisions based on academic and scientific principles, even under uncertainties • Acquiring new knowledge independently • Working independently on an extensive academic and scientific tonic	
	and scientific topic • Communication competencies	
	Communication competencies	
	 Present one's own scientific conclusions to an audience of experts and non-experts in a clear and meaningful way 	

22.01.2025 – SPO 20231 Page 19 of 52

	made realising and Essiming Made riyaregen realinesegy
	 Discuss scientific topics, challenges and ideas with experts and non-experts
	The report and presentation of the results of the master's thesis support the general study goal of acquiring and deepening language, presentation and communication skills.
	Collaborative skills are trained by working on a scientific topic with other people and discussing challenges and results within a project team.
Content	Literature research
	Definition of the problem to solve
	Planning of experiments and steps to solve the problem
	Experimental work and/or academic research
	Preparation of a report and presentation
Material	Material provided by the supervisor, own research
Examination	 Oral Examination: The oral examination is a presentation of the thesis within the course's project seminar. This examination consists of 20 minutes of presentation and 10 minutes of discussion. The seminar date is assigned by the supervisor in coordination with the student.
	 Written thesis: The thesis is a written scientific report. The submission deadline is defined in the application form. The report is submitted via OSC platform of TH Rosenheim.
	 In accordance to the study regulations the ratio of the weight for the final grade is 90 % written report / 10 % oral examination
Literature	

22.01.2025 – SPO 20231 Page 20 of 52

Module Group: Specialization and Application & Competence-Oriented

HTS 01: Chemical H₂ Conversion: Applications and Industrial Processes

Module Responsible	Prof. DrIng. Johannes Völkl	
Lecturer	Prof. DrIng. Johannes Völkl	
Module Group	Application & Competence-Oriented	
Module Duration	1 semester	
Term	Winter	
Applicability of the module in the degree program	MF 38 Chemical H2 Conversion	
Course Type	• Lecture: 50%	
	Practical Course: 50%	
Credit Points (ECTS)	5	
Weekly Working Hours	4	
Total Workload	150 hours	
Prerequisites	Basic knowledge in Chemistry, Thermodynamics and (Process) Modeling	
	Prerequisite for Examination: Participation in first two in-class lectures	
Number of Participants	Not limited	
Learning Goals	After the module students	
	 know different Hydrogen conversion routes to fuels and chemicals based on fossil feedstock 	
	 know different Hydrogen conversion routes to fuels and chemicals based on fossil feedstock 	
	 can compare those routes towards the same product based on different feedstock and identify common parts and differences in the processes 	
	 evaluate the impact of a transformation from a conventional route to a sustainable route 	

22.01.2025 – SPO 20231 Page 21 of 52

- understand the material cycle of the chemical industry and apply this knowledge into the context of new developments
- can select suitable technology parts, e.g. type of reactor, for new sustainable routes
- understand the interconnection between availability of renewable energy, the supply with Hydrogen and supply with additional feedstock for Power-to-X processes
- apply the knowledge in a case study with a Power-to-X process which includes the whole value chain from feedstock supply to production and compare the route to a conventional process
- understand and evaluate options for sector coupling, e.g. coupling of steel mills with chemical production

Content

- Overview of Hydrogen conversion processes based on fossil feedstock as well as from renewable feedstock
 - Methanol Synthesis
 - Ammonia Synthesis
 - Methanisation
 - Fischer-Tropsch Synthesis
 - Synthesis of C2-C4 alcohols
 - Biomass conversion to fuels and chemicals
 - H2 in steel production
- Comparing of conventional routes and sustainable routes,
 e.g. Power-to-X, for above mentioned processes
- Overview of the material cycle of fossil feedstocks to fuels and chemicals
- Evaluation of the impact of the transformation towards sustainable production routes on those material cycles
- Overview of different sources for all important components of the material cycle
 - CO₂ capture
 - N₂ separation

22.01.2025 – SPO 20231 Page 22 of 52

•	Introduction	of	economic	and	sustainability	performance
	indicators					

 Case study on a selected example of a hydrogen conversion process (see "Examination")

Material

Lecture notes as downloadable files (learning campus)

Examination

The examination is carried out as a Case Study on a selected example of a hydrogen conversion process in a Power-to-X route. In the beginning of the semester the students select a topic and form groups. Based on a defined scope they should work out a report on this case study. This report will be graded.

The case study is embedded in a scenario that such a plant should be built in Burghausen. This implies certain conditions for the power supply and other parts, which should be included in the report. The content of the case study consists of the following points:

Status Quo:

- o How is "X" produced currently?
- What is the current global capacity
- o What is the main usage?
- Draw and describe a flowsheet of the current process from raw material to product

New route

- Select an alternative route for "X"
- Describe what sustainable raw materials you would select (CO2 from point source or air capture, N2 from air, biomass,...)
- Draw a flowsheet for the route
- Calculate a rough mass and energy balance
- What catalyst is used and how is the catalyst produced
- Which type of reactor would you chose and why?
- What is the required land usage for the power supply of your plant? (Select wind/sun or any other renewable source and evaluate the land usage)

22.01.2025 – SPO 20231 Page 23 of 52

	 Compare both routes Include a bibliography with all used sources
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 24 of 52

HTS 02: Homogeneous Catalysis

22.01.2025 – SPO 20231 Page 25 of 52

	Photocatalysis
Material	Lecture notes as downloadable files (learning campus)
Examination	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter Overview: Breitmaier, E., Jung, G.: Organic Chemistry; Thieme

22.01.2025 – SPO 20231 Page 26 of 52

HTS 03: Energy Politics and Laws

Module Responsible	Prof. DrIng. Johannes Völkl	
Lecturer	NN	
Module Group	Application & Competence-Oriented	
Module Duration	1 semester	
Term	Summer	
Applicability of the module in the degree program	Application and competence oriented elective course in HYT-Master	
Course Type	• Lecture: 80%	
	Practical Course: 20%	
Credit Points (ECTS)	5	
Weekly Working Hours	4	
Total Workload	150 hours	
Prerequisites	None	
Number of Participants	Not limited	
Learning Goals	Basic understanding of Energy Politics and Laws with a special focus on Renewable Energy and Hydrogen Technology	
Content	Overview of Energy Politics	
	Overview of Energy Laws	
Material	Lecture notes as downloadable files (learning campus)	
Examination	Admission requirements, type and duration according to Study Regulations (SPO), updated at the beginning of each term, announcements published by the examination office	
Literature	Specific literature for each chapter, current papers, will be announced during lectures	

22.01.2025 – SPO 20231 Page 27 of 52

HTS 04: Advanced Thermodynamics for Hydrogen Applications

Module Responsible	Prof. DrIng. Johannes Völkl	
Lecturer	Prof. DrIng. Johannes Völkl	
Module Group	Specialization	
Module Duration	1 semester	
Term	Summer	
Applicability of the module in the degree program	Specialization elective course in HYT-Master	
Course Type	• Lecture: 50%	
	Practical Course: 50%	
Credit Points (ECTS)	5	
Weekly Working Hours	4	
Total Workload	150 hours	
Prerequisites	Fundamental understanding of (chemical) engineering	
Number of Participants	Not limited	
Learning Goals	After the module students	
	 know calculation methods for thermodynamic properties of Hydrogen 	
	○ Ideal Gas Law	
	 Soave-Redlich-Kwong 	
	o Group Contribution Methods	
	 can apply those methods to solve technical problems in e.g. compression, combustion or separation 	
	 identify, when to use more sophisticated thermodynamic models instead of ideal equations 	
	know how to calculate combustion characteristics:	
	o Flame speed	
	o Flame length	
	 Combustion temperature 	
	 Flue gas composition 	

22.01.2025 – SPO 20231 Page 28 of 52

•	know the difference in combustion characteristics between Hydrogen and hydrocarbons
•	know the influence of these differences on flame characteristics and combustion design
•	evaluate the influence of these differences on the design of combustion chambers and combustion engines
•	evaluate if hydrogen combustion is technological and economical feasible
Content •	Overview of thermodynamic cycle processes
•	Property methods for hydrogen
•	General combustion theory
	o Combustion temperature
	o Flame characteristics
	o Burner design
•	Comparison of hydrogen combustion with hydrocarbon combustion
	o Estimation of combustion temperature
	o Estimation of flue gas composition
	o Estimation of energy release
•	Internal combustion engines with Hydrogen for transportation
•	Thermodynamics of Hydrogen compression
Material Lectu	re notes as downloadable files (learning campus)

22.01.2025 – SPO 20231 Page 29 of 52

HTS 05: Sources and Generation of Hydrogen

Module Responsible	Prof. DrIng. Patrick Preuster	
Lecturer	Prof. DrIng. Patrick Preuster	
Module Group	Specialization	
Module Duration	1 semester	
Term	Summer	
Applicability of the module in the degree program	Specialization elective course in HYT-Master	
Course Type	• Lecture: 50%	
	Practical Course: 50%	
Credit Points (ECTS)	5	
Weekly Working Hours	4	
Total Workload	150 hours	
Prerequisites	Fundamental understanding of (chemical) engineering	
Number of Participants	Not limited	
Learning Goals	 After the course students know the different routes for hydrogen generation processes in depth understand the advantages and disadvantages of each process route are able to calculate mass- and energy balances for hydrogen generation processes are able to select a suitable hydrogen generation process for a given downstream process based on different parameters know the environmental impact of the different hydrogen generation process e.g. global warming potential 	
Content	 Overview of Hydrogen generation processes Process routes of conventional Hydrogen production processes 	

22.01.2025 – SPO 20231 Page 30 of 52

	 Process routes of sustainable Hydrogen production processes
	 Comparing different electrochemical water splitting technologies Comparison of Hydrogen generation processes
Material	Lecture notes as downloadable files (learning campus)
Examination	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 31 of 52

HTS 06: Hydrogen Storage, Transportation and Distribution Systems

Module Responsible	Prof. DrIng. Patrick Preuster
Lecturer	Prof. DrIng. Patrick Preuster
Module Group	Specialization
Module Duration	1 semester
Term	Winter
Applicability of the module in the degree program	Specialization elective course in HYT-Master
Course Type	• Lecture: 60%
	Practical Course: 40%
Credit Points (ECTS)	5
Weekly Working Hours	4
Total Workload	150 hours
Prerequisites	Fundamental understanding of (chemical) engineering
Number of Participants	Not limited
Learning Goals	 After the course students know the different methods for hydrogen storage understand the advantages and disadvantages of each storage technology are able to calculate mass- and energy balances for hydrogen storage methods are able to calculate specific hydrogen storage and transportation costs for different technologies are able to compare hydrogen storage technologies are able to select a suitable hydrogen storage and transportation method know the environmental impact of the different hydrogen generation process e.g. global warming potential

22.01.2025 – SPO 20231 Page 32 of 52

	 are able to apply the knowledge in lab practice e.g. in the hydrogenation and dehydrogenation of a chemical hydrogen carrier
Content	 Overview of Hydrogen storage and transport methods from a distribution and transportation point of view Ammonia Liquid hydrogen Gaseous hydrogen Ethers Acids Alcohols Liquid Organic Hydrogen Carriers Metal Hydrides Adsorption Detailed discussion of selected storage methods Detailed discussion of selected transport and distribution methods Comparison of different methods to store and transport Hydrogen Lab course in which the hydrogenation and dehydrogenation of a chemical hydrogen carrier is conducted
Material	Lecture notes as downloadable files (learning campus)
Examination	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 33 of 52

HTS 07: Electrochemical Process Engineering

Module Responsible	Prof. DrIng. Patrick Preuster
Lecturer	Prof. DrIng. Patrick Preuster
Module Group	Specialization
Module Duration	1 semester
Term	Summer
Applicability of the module in the degree program	Specialization elective course in HYT-Master
Course Type	• Lecture: 50%
	Practical Course: 50%
Credit Points (ECTS)	5
Weekly Working Hours	4
Total Workload	150 hours
Prerequisites	Fundamental understanding of (chemical) engineering
Number of Participants	Not limited
Learning Goals	 After the course students understand electrochemical conversion processes understand electrochemical catalysis know different processes for electrochemical hydrogen generation as well as consumption understand the concept of Co-electrolysis and are able to design a suitable process integration are able to compare electrochemical process routes are able to select suitable electrochemical conversion units for given process conditions apply the knowledge in a case study
Content	 Overview of electrochemical fundamentals Overview of electrochemical process concept Definitions of fundamental concepts in electrochemical processes

22.01.2025 – SPO 20231 Page 34 of 52

	Water Electrolysis and Fuel Cell Application
	Electrochemical CO ₂ Reduction
	Reactor and Process Concepts
	 Application of the knowledge in a lab course on a reversible PEM electrolyzer
Material	Lecture notes as downloadable files (learning campus)
Examination	The examination is carried out as a Case Study on a selected example for which an electrochemical process should be carried design and scaled appropriately.
	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 35 of 52

HTS 08: Techno-Economic Analysis and Simulation

Madula Danasalida	Deef De Jon Johannes Willed
Module Responsible	Prof. DrIng. Johannes Völkl
Lecturer	Prof. DrIng. Johannes Völkl
Module Group	Application & Competence-Oriented
Module Duration	1 semester
Term	Summer
Applicability of the module in the degree program	MF 43 Techno-Economic Analysis and Simulation
Course Type	• Lecture: 50%
	Practical Course: 50%
Credit Points (ECTS)	5
Weekly Working Hours	4
Total Workload	150 hours
Prerequisites	Fundamental understanding of (chemical) engineering
Number of Participants	Not limited
Learning Goals	After the module the students
	know the parts of a Techno-Economic Analysis
	 understand how to obtain required data for Techno- Economic Analysis
	 can compare different approaches to estimate CAPEX based on characteristic process data
	 know factors to quantify sustainability criteria of process routes
	 apply the learned concepts in an individual case study in which a Techno-Economic calculation is carried out
	 can use ASPEN Plus in the context of Techno-Economic Analysis
Content	Fundamentals of economical process assessment
	Calculation of CAPEX and OPEX for process routes
	Evaluation of different CAPEX estimation approaches

22.01.2025 – SPO 20231 Page 36 of 52

	Application of evaluation methods for sustainability criteria, e.g. greenhouse gas emissions
	Overview of methods of conceptual process design
	 Comparison of different approaches for a Techno- Economic evaluation of process routes
	 Individual Case Study: Techno-Economic evaluation for a selected topic as examination project
	Introduction to the usage of Process Simulation to generate data for Techno-Economic Analysis
Material	Lecture notes as downloadable files (learning campus)
Examination	The examination is carried out as a Case Study on a selected example for which a Techno-Economic evaluation should be carried out. The process set-up will be given, the students should apply the different methods for CAPEX and OPEX calculations they learned in the lecture.
	The required content for the report and the specific project topics are announced in the beginning of the semester in the lecture and Learning Campus.
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 37 of 52

HTS 09: Energy Technologies

Module Responsible	Prof. DrIng. Patrick Preuster
Lecturer	Prof. DrIng. Patrick Preuster
Module Group	Application & Competence-Oriented
Module Duration	1 semester
Term	Winter
Applicability of the module in the degree program	
Course Type	• Lecture: 80%
	Practical Course: 20%
Credit Points (ECTS)	5
Weekly Working Hours	4
Total Workload	150 hours
Prerequisites	Fundamental understanding of (chemical) engineering
Number of Participants	Not limited
Learning Goals	After the module the students
	 know basic terms of the energy industry
	 know the impact of power generation on environment and climate
	 are able to explain the functioning and areas of application of the various technologies for power and heat generation, distribution and storage technologies
	 are able to demonstrate the links between energy generation and climate change
	 are able to identify key factors in the pricing of electricity, gas and heat
	 are able to make comparative assessments of the environmental impact of different technologies of energy generation
	are able to carry out simple material/energy flow calculations for energy generation plants

22.01.2025 – SPO 20231 Page 38 of 52

	are able to carrying out simple economic efficiency coloulations for energy generation plants.
	calculations for energy generation plants
Content	Basic concepts of the energy industry
	Reserves and resources of conventional energy sources
	 Statistics and forecasts of energy production and consumption
	Energy and climate, energy policy programs
	 Thermal power generation (coal, gas, biogas, nuclear power plants, geothermal, solar thermal power plants)
	 Non-thermal power generation (hydropower, wind power, photovoltaics)
	Electricity distribution and storage
Material	Lecture notes as downloadable files (learning campus)
Examination	The examination is carried out as a Case Study on a selected example for which an conventional and a renewable energy production or storage method should be compared regarding certain KPIs e.g. GHP.
	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 39 of 52

HTS 10: Introduction to the Economics of Hydrogen Markets

Module Responsible	Prof. Dr. Jan Lüken
Lecturer	Prof. Dr. Jan Lüken/Philipp Berndl
Module Group	Application & Competence-Oriented
Module Duration	1 semester
Term	Summer
Applicability of the module in the degree program	
Course Type	• Lecture: 50%
	Practical Course: 50%
Credit Points (ECTS)	5
Weekly Working Hours	4
Total Workload	150 hours
Prerequisites	none
Number of Participants	Not limited
Learning Goals	Upon completion of this course, students will be able to:
	 Articulate the economic, social, and environmental underpinnings of the hydrogen economy.
	 Analyze the challenges and opportunities of hydrogen in an economic context, especially regarding the green transformation in Germany and Europe.
	 Evaluate the role of policy and regulation in shaping the hydrogen market and its integration into existing energy systems. Develop informed perspectives on the future of hydrogen as a key component of global energy transitions.
Content	 Economic Evaluation: Apply economic principles and models to assess the feasibility, sustainability, and market potential of hydrogen technologies and initiatives. This includes understanding cost structures, pricing mechanisms, and financial incentives.

	 Policy and Regulatory Insight: Analyze the impact of policy and regulation on the hydrogen economy, identifying how governmental frameworks can support or hinder economic viability and market development. Market Analysis: Understand the dynamics of the hydrogen market, including supply and demand factors, market segmentation, and the role of international trade in hydrogen economics.
	 Strategic Thinking and Business Modelling: Formulate strategies to navigate economic and regulatory barriers in the development of the hydrogen economy, with an emphasis on identifying economic opportunities and creating value in emerging hydrogen markets.
Material	Lecture notes as downloadable files (learning campus)
Examination	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	 Specific literature for each chapter Heuser, P. M., Ryberg, D. S., Grube, T., Robinius, M., & Stolten, D. (2019). Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen. <i>International journal of hydrogen energy</i>, 44(25), 12733-12747 Schippert, J., Runge, P., Farhang-Damghani, N., & Grimm, V. (2022). Greenhouse gas footprint of blue hydrogen with different production technologies and logistics options. <i>Available at SSRN 4153724</i>. Robinius, M., Cerniauskas, S., Madlener, R., Kockel, C., Praktiknjo, A., & Stolten, D. (2022). Economics of Hydrogen. In The Palgrave Handbook of International Energy Economics (pp. 75-102). Cham: Springer International Publishing.

22.01.2025 – SPO 20231 Page 41 of 52

HTS 11: Computational Fluid Dynamics for Process Industry

Module Responsible	Prof. DrIng. Johannes Lindner
Lecturer	Prof. DrIng. Johannes Lindner
Module Group	Specialization
Module Duration	1 semester
Term	Winter
Applicability of the module in the degree program	Specialization elective course in HYT-Master
Course Type	• Lecture: 50%
	Practical Course: 50%
Credit Points (ECTS)	5
Weekly Working Hours	4
Total Workload	150 hours
Prerequisites	Fundamental understanding of (chemical) engineering including basics in mathematics and fluid mechanics
Number of Participants	Limited (30) Enrollment requirements and procedure will be announced via Learning Campus.
Learning Goals	
Loaning Coulo	After the course students understand the limitations of CFD know the basics of computational fluid dynamics can design, model and mesh can simulate flow of gas and reactions including gas can apply CFD to applications in hydrogen technology

	Short introduction to selected other simulation methods
Material	Lecture notes as downloadable files (learning campus)
Examination	The students create a project study thesis on a individual CFD-simulation of a process linked to hydrogen technology.
	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 43 of 52

HTS 12: Membrane Technologies

Module Responsible	Prof. DrIng. Angela Klüpfel
Lecturer	Prof. DrIng. Angela Klüpfel
Module Group	Specialization
Module Duration	1 semester
Term	Winter
Applicability of the module in the degree program	Specialization elective course in HYT-Master
Course Type	Lecture: 75%Practical Course: 25%
Crodit Points (ECTS)	5
Credit Points (ECTS)	
Weekly Working Hours	4 450 haves
Total Workload	150 hours
Prerequisites	Chemistry and (chemical) engineering fundamentals, including (chemical) lab work experience
Number of	Limited (16)
Participants	Enrollment requirements and procedure will be announced via Learning Campus.
Learning Goals	 After the course students Understand fundamentals of mass transport, advantages and limitations of membrane processes in different applications Can discuss recent developments in membrane materials and membrane processes supporting emission control, circularity, resource efficiency, and hydrogen applications Can plan and perform basic screening experiments for a given separation challenge Can roughly design a membrane based process combination by assessment of starting point and objective, derivation of pretreatment requirements,

22.01.2025 – SPO 20231 Page 44 of 52

	 evaluation of experimental results and estimation of process parameters Can apply membrane technologies to applications in hydrogen technology
Content	 Overview on membrane applications Membrane technology fundamentals (driving forces, mass transport, materials, preparation) Membrane modules, process design and operation Characterization methods Recent developments and case studies Membrane based applications discussed in the course will include e.g.: water and waste water treatment, resource recovery, industrial liquid and gas separation processes, fuel cells and electrolysis The practical part consists of a case study in the field of membrane applications in aqueous environments which includes literature search, lab experiments and process design.
Material	Lecture notes as downloadable files (learning campus)
Examination	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 45 of 52

HTS 13: Heterogenous Catalysis

Module Responsible	Prof. Dr. Dorottya Kriechbaumer
Lecturer	Prof. Dr. Dorottya Kriechbaumer
Module Group	Application & Competence-Oriented
Module Duration	1 semester
Term	Winter
Applicability of the module in the degree program	Application & Competence-Oriented elective course in HYT-Master
Course Type	• Lecture: 75%
	Practical Course: 25%
Credit Points (ECTS)	5
Weekly Working Hours	4
Total Workload	150 hours
Prerequisites	Profound knowledge in chemistry (thermodynamics, reaction kinetics), practical experience in laboratory work
Number of Participants	Unlimited In WS 23/24: Optional lab course, group size and group organization will be announced in the lecture
Learning Goals	 The students gain an: Overview of heterogeneous catalysis and relevance in the chemical industry Understanding the kinetics of heterogeneous catalysis Understanding the design, preparation and characterization methods of catalysts Insight into the process engineering of heterogeneous catalysis and typical reactors Insight to application for power-to-hydrogen, and hydrogen-to-power solutions
Content	 Definition, fundamentals and comparison to other catalytic methods Surface reactions

22.01.2025 – SPO 20231 Page 46 of 52

	Reaction kinetics, reaction mechanism
	Types of catalysts
	Catalyst preparation, characterization and degradation
	Life cycle of a catalyst
	Catalytic process engineering
	Introduction of electrocatalysis and photocatalysis
Material	Lecture notes as downloadable files (learning campus)
Examination	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 47 of 52

HTS 14: Carbon Management

Module Responsible	Prof. DrIng. Patrick Preuster / Prof. DrIng. Johannes Völkl
Lecturer	Prof. DrIng. Patrick Preuster / Prof. DrIng. Johannes Völkl
Module Group	Specialization
Module Duration	1 semester
Term	Summer
Applicability of the module in the degree program	Specialication elective course in HYT-Master
Course Type	• Lecture: 75%
	Practical Course: 25%
Credit Points (ECTS)	5
Weekly Working Hours	4
Total Workload	150 hours
Prerequisites	Basic knowledge in Chemistry, Thermodynamics and Chemical Engineering
	Prerequisite for Examination: Participation in first two in-class lectures
Number of Participants	Unlimited
Learning Goals	The students gain an: • Overview of sources of CO ₂
	 Understanding technical challenges for the separation of CO₂
	 Insight into applications (Carbon Capture and Utilization CCU) or storage (Carbon Capture and Storage CCS) of
	CO_2
	 Overview of regulations and legal frameworks related to Carbon Management
	 Introduction to economic aspects of Carbon Management, e.g. certificate trading

22.01.2025 – SPO 20231 Page 48 of 52

	 Detailed insights into general separation technologies and
	specific technical estimation of CO ₂ separation processes
Content	 Origin of CO₂ in natural and technical processes, differences in concentration, composition and amount
	Technical separation principles
	Definition of CCU and CCS with application examples
	Legal frameworks related to Carbon management
	 Influence of regulations on the technical development of CO2 separation and application
	 Economic approaches, e.g. certificate trading, to support a carbon management strategy
Material	Lecture notes as downloadable files (learning campus)
Examination	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 49 of 52

HTS 15: Project Management

Module Responsible	Prof. Dr. Günter Modzel
Lecturer	Prof. Dr. Günter Modzel
Module Group	Application & Competence-Oriented
Module Duration	1 semester
Term	Summer
Applicability of the module in the degree program	Application and competence oriented elective course in HYT-Master
Course Type	• Lecture: 80%
	Practical Course: 20%
Credit Points (ECTS)	5
Weekly Working Hours	4
Total Workload	150 hours
Prerequisites	None
Number of	Limited (30)
Participants	Enrollment requirements and procedure will be announced via Learning Campus.
Learning Goals	Understanding the theoretical concept of project management. Becoming familiar with the real life challenges of project management.
Content	Basic concept of project management
	Project management tools
	Problems of project management
Material	Lecture notes as downloadable files (learning campus)
Examination	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter, current papers, will be announced during lectures

22.01.2025 – SPO 20231 Page 50 of 52

HTS 16: Chemistry of renewable resources

Module Responsible	Prof. Dr. Dominik Pentlehner, Prof. Dr. Manuela List
Lecturer	Prof. Dr. Dominik Pentlehner, Prof. Dr. Manuela List
Module Group	Application & Competence-Oriented
Module Duration	1 semester
Term	Summer
Applicability of the module in the degree program	MF37 chemistry of renewable resources
Course Type	• Lecture: 75%
	Practical Course: 25%
Credit Points (ECTS)	5
Weekly Working Hours	4
Total Workload	150 hours
Prerequisites	Profound knowledge in Chemistry both theory and practical (lab work)
Number of Participants	Limited (20 in practical course)
	Enrollment requirements and procedure will be announced via Learning Campus.
Learning Goals	 overview and knowledge about the chemistry of renewable resources. Different types of resources, pathways, applications
	 definitions, advantage and disadvantages compared to fossil raw materials, pathways for renewable resources, applications
Content	Biorefinary: from renewable resources to chemicals and pharmaceeuticals
	Chemical modifications of chemicals from renewable resources, e.g. Celluloseacetate
	Bulk chemicals from renewable resources"
	Biopolymers

22.01.2025 – SPO 20231 Page 51 of 52

	Fats and oils
	Carbohydrates
	• Lignin
	Amino acids and proteins
	Others, e.g. terpenoids, vitamins"
Material	Lecture notes as downloadable files (learning campus)
Examination	Admission requirements, type and duration according to Study Regulation (SPO), updated at the beginning of each term, announcements published by the examination office
Literature	Specific literature for each chapter

22.01.2025 – SPO 20231 Page 52 of 52