nnovationlab

Dimos-LiCaFuse

"Enhancing Vision with LiDAR Precision"

Members:

Hannah Schwarz, Sebastian Fleps, Victor Owolabi, Soumyadip Banerjee, Tafara Machiridza

Motivation and goals

- Accurate Object Detection: Use LiDAR and camera to detect objects and determine their exact position and size.
- Real-Time Data Sharing: Send object data instantly for applications like self-driving cars and security systems.

calibration.txt

object_class.txt object_label.txt

Image of chair from LIDAR sensor

Architecture

Key steps of our Project

- Data Retrieval: Acquire point cloud data from publicly available LiDAR datasets.
- Object Detection: Implement clustering algorithms to detect objects within the point cloud data.
- Data Extraction: Determine the location (x, y, z) and size of detected objects.
- Data Transmission: Send this information to an MQTT broker for real-time applications.

Results:

- Accurate Distance Measurement: Objects like cars and cyclists are detected with precise distance measurements.
- Real-Time Object Detection: Multiple objects in the environment are identified and tracked in real-time.

Output image result

