
7 8

COMPRESSION OF SEMANTIC VECTORS INTO BIT VECTORS
TO ENABLE EFFICIENT SEARCH WITH LARGE LANGUAGE
MODELS

YANNIK HINTEREGGER (MASTERSTUDIUM INFORMATIK)
Betreuer: Prof. Dr. Markus Breunig, Prof. Dr. Marcel Tilly

B E S T E A B S C H L U S S - A R B E I T E N 2 0 2 3 / 2 4

R O S E N H E I M E R I N F O R M A T I K P R E I S
I N F - M A S T E R

This problem motivated my master's thesis.
In my thesis, I explored methods to reduce
the memory requirements and processing
time of the float embeddings generated by
LLMs.

We first examined other similarity measures
for vectors, implemented them in Java and
compared their performance. As shown in
the figure below, Hamming distance is sig-
nificantly faster. This speed is due to com-
paring binary vectors using an XOR operati-
on, which CPUs can execute very efficiently
since XOR is a basic CPU operation, phy-
sically implemented by the transistors on a
CPU.

However, the embeddings of LLMs are
represented in a real space, not a binary
space. Therefore, we investigated how bi-
nary autoencoders – a specific type of AI
algorithm – can be used to transfer embed-
dings from a real space to a binary space.

In my master's thesis, we demonstrated that binary autoencoders could achieve a very high compression rate for embed-
dings if a slight semantic quality loss is acceptable. For example, BERT's 768-dimension float embeddings were translated
into 512-dimension binary embeddings. This translation resulted in a median quality loss of just over 3%, a 46-fold reduction

in memory requirements, and a 30-fold re-
duction in processing time. This means a
search query against the English Wikipedia
could be handled with 13.5 GB of memory
and 2.4 seconds of CPU time.

Furthermore, we showed that binary au-
toencoders could generate binary embed-
dings for other data types, such as ima-
ges. We implemented an image similarity
search using binary embeddings. In the
subsequent figures, the original images are
in the first column on the left, and the en-
coded information of the images is shown
to the right. The right figure shows a search
implemented with these binary embed-
dings. The left image is the query image,
and the images to the right are sorted by
similarity of their binary embeddings.

The term Large Language Model (LLM) is constantly menti-
oned when discussing AI. Today, w the use of LLMs, writing
emails, code, or even an entire bachelor's or master's thesis
is now easy. However, many there are many other aspects to
these language models that are less prominently discussed.
For example, language models can be used to build highly
effective search engines.

Comparing texts is not simple – especially for machines.
Consider these sentences: “The weather is nice” and “The
sun smiles at me today.” Although the meanings are the
same, they do not share any words. From context, we hu-
mans can recognize the similarity, but a machine struggles
with this.

With language models it is possible to encode the meaning
of language into vectors – known as embeddings.
These embeddings encode the meaning of a text using the
direction of a vector. While this may sound abstract, the fun-
damental idea is straightforward: The vectors of similar sen-
tences point into similar directions.

It is now widely accepted that LLMs are very good at enco-
ding the meaning of language into these embeddings.
Utilizing these embeddings has significantly improved vari-
ous language processing tasks. However, these embed-
dings face a challenge: scalability.

The embeddings of LLMs are high-dimensional, often having
between 500 and 2000 dimensions in a real-valued space.
For example, the well-known language model BERT has em-
beddings consisting of 768 floats. This means an embedding
requires slightly more than 3 KB of memory. At first glance,
this doesn't seem like much, but large text databases quickly
accumulate immense data volumes. Consider the English
Wikipedia, which consists of 210 million sentences. Making
each sentence searchable would result in 650 GB of vectors.

Another issue is processing time. To determine the similari-
ty between two vectors, cosine similarity is used, which es-
sentially measures the angle between two vectors. Using a
Java implementation of cosine similarity, it takes about 360
nanoseconds to compare two vectors. Applying this to the
Wikipedia example, without further optimizations such as a
data structure like HNSW, it would take approximately 75
seconds of CPU time to determine the similarity of one vec-
tor to all others.

It's important to note that this processing speed is only
achievable if all embeddings are stored in memory.
Therefore, it requires a machine with a lot of memory and
computing power to handle a text database the size of the
English Wikipedia. Even then, response times of 75 seconds
are poor for a user, and multiple users cannot be processed
simultaneously.

Four words represented by their embeddings in a continuous 3-dimensional vec-
tor space.1

1Pilehvar, M. T., & Camacho-Collados, J. (2020). Embeddings in natural language processing: Theory and advances in vector repre-
sentations of meaning. Morgan & Claypool Publishers

Lehre & Studium Fakultät für Informatik / TH Rosenheim

